Frontotemporal dementias: an update

Dr James Burrell Neurologist Senior Research Officer

What is FTD?

- Rare, but important cause of dementia
- Peak incidence between 50-70 years
- Second most common cause of young-onset dementia
- Prevalence ~ 15-20/100,000
- Presents with changes in <u>LANGUAGE</u> or <u>BEHAVIOUR</u> (or both)

KNIFE EDGE ATROPHY

Overlap with other pathologies

- 73 year old woman
- 2 year history of progressive language disturbance
 Word finding difficulty
 - Syntactic errors in speech pronouns he/she, tense, word ordering (former school principal)

- Effortful, halting speech
- Word-finding difficulties
- Syntactic errors
- Sound distortions (apraxia of speech) and phonemic errors

PROGRESSIVE NON-FLUENT APHASIA (PNFA)

- 57-year-old journalist
- 9 months progressive speech disturbance
 described by patient as 'halting' speech.

- Speech:
 - Reduced content
 - Effortful
 - Syntactic errors
 - Apraxia of speech
 - Generally preserved word/object knowledge

PROGRESSIVE NON-FLUENT APHASIA (PNFA)

- Speech:
 - Reduced content
 - Effortful
 - Syntactic errors
 - Apraxia of speech
 - Generally preserved word

PROGRESSIVE NON-FLUENT APHASIA (PNFA)

DRAMATIC DECLINE IN ONLY 12 MONTHS

- 60-year-old woman
- 3 year history of:
 - Word-finding difficulty
 - Comprehension
 - Following thread when reading
 - Writing
 - Poor Concentration

- Severe word finding prob
 - "Umm, umm"
- Phonological errors
 - "Eastwold" rather than "Eastwood"
- Some fluent snippets
- Syntactic errors
 - "That orchard . . . That we

PROGRESSIVE NON-FLUENT APHASIA?

NON-FLUENT APHASIA

Overlapping Dementia Syndromes

- Symptoms and signs can overlap or evolve
- Diagnosis?
 - <u>Clinical assessment</u>, supported by imaging and neuropsychology
 - Biomarkers of *neurodegeneration* (research)

Logopenic Progressive Aphasia

- Atypical Alzheimer's disease
- May be difficult to distinguish from PNFA
- At a group level, more posterior temporal and parietal atrophy

euRA

Subtypes of progressive aphasia: application of the international consensus criteria and validation using β -amyloid imaging

Cristian E. Leyton,^{1,2} Victor L. Villemagne,^{3,4,5} Sharon Savage,¹ Kerryn E. Pike,^{3,4,6} Kirrie J. Ballard,⁷ Olivier Piguet,^{1,2} James R. Burrell,^{1,2} Christopher C. Rowe^{3,5} and John R. Hodges^{1,2}

KEY FEATURES: ANOMIA WORD FINDING IMPAIRED SENTENCE REPETITION

PiB Positive

PiB Negative

AMYLOID MARKER = ALZHEIMER'S DISEASE

-

13 OUT OF 14 LOGOPENIC CASES WERE PIB POSITIVE

- 48 year old man
- 2-3 history of behavioural changes
 - More withdrawn socially
 - Difficulty following rules (substitutions in soccer)
 - Increased libido (approaching sister-in-law)
 - Much less empathic and affectionate

Case 4

- Perseverative
- Rigid in routines etc
- Personal hygiene

Behavioural variant frontotemporal dementia (bvFTD)

- Inappropriate comments, behaviour, social conduct
- Language generally preserved (catchphrases)
- Too much fun . . .
- Lack of empathy

Assessment of Emotion in Frontotemporal Dementia

How is this person feeling?

Emotion recognition ability

- Ability to recognise emotions from faces is reduced in:
 - behavioural-variant frontotemporal dementia,
 - semantic dementia
 - progressive non-fluent aphasia
- Negative emotions more affected than positive emotions

Kumfor et al (2011) Social Welleoßeieniceu

Improving emotion recognition

- Performance improves as the facial expression becomes more exaggerated
- Most effective in behaviouralvariant frontotemporal dementia and progressive nonfluent aphasia

- 55 year old woman
- 3 year history of problems with "memory for words"
 - Names of people/places/objects
 - Word alienation when reading
 - Preserved concentration and general memory performance

- Breakdown in semantic knowledge
 Naming, word-knowledge
- Preserved fluency, grammar, prosody of speech

Semantic dementia

bvFTD

PNFA

Semantic Dementia

FDG-PET scan Severe frontal hypometabolism Temporal hypometabolism

- 60 year old male
- 12/12 history of speech problems
 - Dysarthria
 - Dysphagia
 - Weight loss
 - No limb wasting/weakness
 - Behavioural changes (apathy)

- 60 year old male
- 12/12 history of speech pro
 Dysarthria
 - Dysphagia
 - Weight loss
 - No limb wasting/weakness
 - Behavioural changes (apathy)

Frontotemporal dementia AND Motor neuron disease

MND + Cognitive symptoms

Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis

Manuela Neumann,^{1,11}* Deepak M. Sampathu,¹* Linda K. Kwong,¹* Adam C. Truax,¹ Matthew C. Micsenyi,¹ Thomas T. Chou,² Jennifer Bruce,¹ Theresa Schuck,¹ Murray Grossman,^{3,4} Christopher M. Clark,^{3,4} Leo F. McCluskey,³ Bruce L. Miller,⁶ Eliezer Masliah,⁷ Ian R. Mackenzie,⁸ Howard Feldman,⁹ Wolfgang Feiden,¹⁰ Hans A. Kretzschmar,¹¹ John Q. Trojanowski,^{1,4,5} Virginia M.-Y. Lee^{1,4,5}†

TDP-43 > 90% of MND

Science. 2006 Oct 6;314(5796):130-3.

TDP-43 > 50% of FTD

Rest = Tau

Motor Neuron dysfunction in frontotemporal dementia

James R. Burrell,^{1,2,3} Matthew C. Kiernan,^{1,2,3} Steve Vucic^{1,4} and John R. Hodges^{1,3}

- 40 consecutive FTD patients
- 42 age and gender matched MND
- 26 controls
- 5 (12.5%) FTD patients developed MND
 - 3 presented with bvFTD
 - 2 presented with PNFA

Subclinical Motor Dysfunction –

Up to 30% of FTD patients

Results

Semantic Composite Total scores for all participant groups

% Impaired: SD – 100%

FTD-MND - 80%

ALS - 58.3%

Semantic deficits in amyotrophic lateral sclerosis

FELICITY V. C. LESLIE^{1,2,3,4}, SHARPLEY HSIEH^{1,3,4}, JASHELLE CAGA⁴, SHARON A. SAVAGE¹, ENEIDA MIOSHI⁵, MICHAEL HORNBERGER⁶, MATTHEW C. KIERNAN^{1,4}, JOHN R. HODGES^{1,2,3} & JAMES R. BURRELL^{1,2,3}

¹Neuroscience Research Australia, Sydney, ²School of Medical Science, University of New South Wales, Sydney, ³ARC Centre of Excellence in Cognition and its Disorders, University of New South Wales, Sydney, ⁴Brain and Mind Research Institute, The University of Sydney, Sydney, Australia, and Departments of ⁵Psychiatry and ⁶Department of Clinical Neuroscience, Cambridge University, Cambridge, UK

FTD-MND - Syntax

SON AFETER / DONE WATH YOU SEE BUILDING WAYS 160T SIK AND GETING WEK DAY BY DAY

SAME TIME "GET VERY FROSTED / USED TO BE VERY FET

Test of Reception of Grammar (TROG)

Point to:

"The boy chasing the horse is fat"

20 blocks Normal = 4 items per block (80 total) Modified = 2 items per block (40 total)

Results

22.2% of MND (NS)

78.6% of PNFA (P < 0.001)

93.3% of FTD-MND (P < 0.001)

P < 0.001 v controls (*) and MND (*)

• 5 years earlier . . .

- Complaints about "legs pulling"
- Obsessed with bowel movements
- Convinced he was about to die
- Paranoia
- Catatonia nihilistic delusions
- Marked apathy

Case 5 – Summary

BROTHER DIED of MND @ 59 years

Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family

Adam L Boxer,¹ Ian R Mackenzie,² Bradley F Boeve,³ Matthew Baker,⁴ William W Seeley,¹ Richard Crook,⁴ Howard Feldman,⁵ Ging-Yuek R Hsiung, Nicola Rutherford,⁴ Victor Laluz,¹ Jennifer Whitwell,⁶ Dean Foti,⁵ Eric McDa Jennifer Molano,³ Anna Karydas,¹ Aleksandra Wojtas,^{4,7} Jill Goldman,⁸ Jacob Mirsky,¹ Pheth Sengdy,⁵ Stephen DeArmond,⁹ Bruce L Miller,¹ Rosa Rademakers⁴

Boxer A L et al. J Neurol Neurosurg Psychiatry doi:10.1136/jnnp.2009.204081

NEW CAUSE FOR FTD-MND IDENTIFIED IN 2011

C9orf72 REPEAT EXPANSION

FAMILY CLUSTERS

FAMILIAL AND SPORADIC DISEASE

Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations

Julie S. Snowden,^{1,2} Sara Rollinson,² Jennifer C. Thompson,^{1,2} Jennifer M. Harris,^{1,2} Cheryl L. Stopford,^{1,2} Anna M. T. Richardson,^{1,2} Matthew Jones,^{1,2} Alex Gerhard,^{1,2} Yvonne S. Davidson,² Andrew Robinson,² Linda Gibbons,² Quan Hu,² Daniel DuPlessis,³ David Neary,^{1,2} David M. A. Mann² and Stuart M. Pickering-Brown²

- 12/32 of C9ORF72 patients = 37.5% presented with psychosis or mixture of behavioural and psychotic features
 - Psychosis on presentation = OR 15.4, 95% CI 5.9–40.0 of having C9ORF72

C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts

NEURA COHORT

Psychotic symptoms:

- 56% of C9ORF72 positive cases
- <u>14% of C9ORF72 negative cases</u>

Clinical presentation

- bvFTD
- **FTD-MND**

stralia

Clinical heterogeneity of the C9orf72 genetic mutation in frontotemporal dementia

E. Devenney^{a,b,c}*, D. Foxe^a, C. Dobson-Stone^{a,d}, J.B. Kwok^{a,d}, M.C. Kiernan^{a,c} and J.R. Hodges^{a,d}

^aNeuroscience Research Australia, Sydney, NSW, Australia; ^bPrince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia; ^cBrain and Mind Research Institute, University of Sydney, Sydney, NSW, Australia; ^dSchool of Medical Sciences, University of New South Wales, Sydney, NSW, Australia

(Received 14 January 2014; accepted 29 July 2014)

- Two cases
 - First was very **SLOWLY** progressive
 - ?FTD
 - Second was very **RAPIDLY** progressive
- Often more widespread cognitive deficits (memory, visuospatial)
- Marked clinical heterogeneity

Heritability in frontotemporal dementia: more missing pieces?

Kieren Po•Felicity V. C. Leslie•Natalie Gracia• Lauren Bartley•John B. J. Kwok•Glenda M. Halliday• John R. Hodges•James R. Burrell

 FTD more heritable than Alzheimer's Disease

 bvFTD, FTD-MND especially

> Less than half of patients with strong family history had a documented genetic lesion

Management of FTD

- Few treatment options
- Education, carer support
- Management of behavioural symptoms
 - Non-pharmacological
 - Pharmacological
 - Atypical antipsychotics
 - Anti-depressants
- Respite or placement issues

Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis

- Families with autosomal dominant history
- At risk, pre-sympt Neuropsychological changes 5 years
- Double-blind to g

prior to expected onset

- Carriers and cont Neuroanatomical changes 10+ years
- Detailed neurops
- prior to expected disease onset
- Structural imaging (MRI)

Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis

- Neuropsychological abnormalities detected at ~ 5 years prior to expected disease onset
- Subtle cortical atrophy detectable 10 years prior to expected disease onset
- Some differences by genetic cause
 - C9orf72 changes as early as 20 years prior
 - GRN mutations asymmetry (L > R)

Rohrer et al, Lancet Neurol 2015; 14: 253-62

Summary

- FTD rare, important cause of dementia
- Heterogeneous pathology
 - TDP-43, tau, overlap with Alzheimer's pathology
- Presents with changes in behaviour (bvFTD) or language (PNFA, SD) or both
- Clinical overlaps:
 - Alzheimer's disease Logopenic progressive aphasia
 - Motor neuron disease
- C9orf72 repeat expansion
 - Late onset psychosis
 - Depression, other psychiatric illnesses

Thanks to:

- Prof John Hodges
- Prof Matthew Kiernan
- A/Prof Olivier Piguet
- Frontier group
- Patient and families

FRONTIER

Frontotemporal Dementia Research Group

Funding:

- NHMRC of Australia
- ARC
- MNDRIA
- RACP Foundation

